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Executive Summary

The observation of proton decay (PDK) would rank among the most important dis-
coveries in particle physics to date, confirming a key prediction of Grand Unification
Theories and reinforcing the idea that the laws of physics become increasingly symmet-
ric and simple at higher energies. Proposed Water Cherenkov (WCh) detectors, such as
Hyper-Kamiokande are within reach of PDK detection according to many general PDK
models. However, these experiments will also achieve size scales large enough to see
PDK-like backgrounds from atmospheric neutrino interactions at a rate of roughly a few
events per year per megaton. Given the rarity of proton decay and significance of the
measurement, the observation of proton-decay should be experimentally unambiguous.

Neutron tagging in Gadolinium-loaded water may play a significant role in reducing
these backgrounds from atmospheric neutrinos in next-generation searches. Neutrino
interactions typically produce one or more neutrons in the final state, whereas proton
decay events rarely produce any. The ability to tag neutrons in the final state provides
discrimination between signal and background. Gadolinium salts dissolved in water have
high neutron capture cross-sections and produce ∼8 MeV in gammas, several tens of
microseconds after the initial event. This delayed 8 MeV signal is much easier to detect
than the 2 MeV gammas from neutron capture in pure water. Nonetheless, even the
detection of this signature will not be perfectly efficient in large WCh detectors, especially
those with low photodetector coverage.

It is not enough to identify the presence or absence of neutrons in an interaction. In
proton-decay searches, the presence of neutrons can be used to remove background events.
However, the absence of a tagged neutron is insufficient to attribute confidence to the
observation of a proton decay event since the absence of a neutron may be explained by
detection inefficiencies in WCh detectors. For moderately efficient neutron tagging and
backgrounds peaked at higher neutron multiplicity, the absence of any neutron would
increase confidence in the observation of a PDK candidate event. Calculating an exact
confidence for discovery will require a detailed picture of the number of neutrons produced
by neutrino interactions in water as a function of momentum transfer. Making this
measurement in a neutrino test-beam is thus critical to future proton-decay searches.

The neutron tagging techniques based on such measurement will also be useful to
a broader program of physics beyond proton decay. For example, in the detection of
diffuse supernova neutrino background, neutron tagging can be used to separate between
genuine neutrinos and various radiogenic and spallation backgrounds. In the event of
a core collapse supernova, the detection of neutrons can be used to help discriminate
among different interactions in the water such as inverse beta decay and neutrino-oxygen
scattering.

Here we propose the Accelerator Neutrino Neutron Interaction Experiment (ANNIE),
designed to measure the neutron yield of neutrino interactions in gadolinium-loaded water.
While existing experiments such as Super-Kamiokande have attempted in situ measure-
ments of neutron yield, the analyses were limited by detection inefficiencies and unknowns
in the flux and energy of atmospheric neutrinos. ANNIE would represent a small, dedi-
cated experiment designed to make this measurement on a beamline with known charac-
teristics.

An innovative aspect of the ANNIE design is the use of precision timing to localize
interaction vertices in the small fiducial volume of the detector. We propose to achieve
this by using early prototypes of LAPPDs (Large Area Picosecond Photodetectors). This
experiment will be a first application of these devices demonstrating their feasibility for
WCh neutrino detectors. The ideas explored by ANNIE could have a transformative im-
pact on water Cherenkov and other photodetection-based neutrino detector technologies,
such as the Water-based Liquid Scintillator Concept detector proposed for Homestake.
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1 Introduction

We are presenting a Letter of Intent to carry out the Accelerator Neutrino Neutron Interaction
Experiment (ANNIE). We had previously submitted an Expression of Interest to the Fermi-
lab Physics Advisory Committee (PAC) in January 2014 [1]. Here we update the physics and
design case for the experiment. We present a detailed site study that suggests that the Sci-
BooNE hall on the Booster Neutrino Beam (BNB) is an ideal location to achieve the physics
of this experiment. We also describe our efforts to better understand the neutron background
at this location and we propose an initial phase of this test experiment to characterize this
important background. The goal is to initiate the installation of this phase in the Summer
of 2015. We also provide more details on the development of the experiment’s design as well
as describe the status of several key components already committed to the realization of this
experiment.

2 The Physics of ANNIE

The ability to detect final state neutrons from nuclear interactions would have a transforma-
tive impact on a wide variety of physics measurements in very large Water Cherenkov (WCh)
and water-based liquid scintillator (wbLS) detectors [2]. Neutrino interactions in water often
produce one or more neutrons in the final-state. Tagging events by the presence and number
of final-state neutrons can provide physics analyses with a better handle for signal-background
separation and even allow for more subtle discrimination between different varieties of neu-
trino interactions. For example, the main background on proton decay experiments arises
from atmospheric neutrino interactions. These interactions almost always produce at least
one final-state neutron, whereas proton decays are expected to produce neutrons less than
10% of the time [3].

A promising technique for detecting final state neutrons is the search for a delayed signal from
their capture on Gadolinium dissolved in water. Even moderately energetic neutrons ranging
from tens to hundreds of MeV will quickly lose energy by collisions with free protons and
oxygen nuclei in water. Once thermalized, the neutrons undergo radiative capture, combining
with a nearby nucleus to produce a more tightly bound final state, with excess energy released
in a gamma cascade. Neutron capture in pure water typically produces around 2.2 MeV in
gamma particles (γ) [4]. However, these low energy photons produce very little optical light
and are difficult to detect in large WCh tanks. The introduction of Gadolinium (Gd) salts
dissolved in water is proposed as an effective way to improve the detection efficiency of
thermal neutrons. With a significantly larger capture cross-section (49,000 barns compared
with 0.3 barns on a free proton), Gd-captures happen roughly 10 times faster, on the order of
tens of microseconds [5]. In addition, the Gd-capture produces an 8 MeV cascade of typically
2-3 gammas, producing sufficient optical light to be more reliably detected in large volumes.

A major limitation on the effective execution of neutron tagging techniques comes from large
uncertainties on the nuclear mechanisms that produce neutrons and consequently on how
many neutrons are produced by high energy (GeV-scale) neutrino interactions. The number
of neutrons is expected to depend on the type of neutrino interaction and on the momentum
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Figure 1: Measurement of neutron multiplicity in pure water versus visible energy by the
Super-K collaboration [6].

transfer with higher energy interactions producing more than one neutron. However, the
exact number of neutrons is determined by a variety of poorly understood nuclear processes
and therefore it is not well-known.

It is not enough to identify the presence or absence of neutrons in an interaction. While
the presence of neutrons can be used to remove background events, the absence of a tagged
neutron is insufficient to attribute confidence to the discovery of a proton decay observation.
The absence of a neutron may be explained by detection inefficiencies in the WCh detector
for example. On the other hand, if typical backgrounds consistently produce more than one
neutron, the absence of any neutron would significantly increase the confidence in a PDK-
like event. Calculating an exact confidence for discovery will require a detailed picture of the
number of neutrons produced by neutrino interactions in water as a function of momentum
transferred.

The Super-Kamiokande (Super-K) collaboration has attempted to measure the final state
neutron abundance. Fig 1 shows the neutron multiplicity as a function of visible energy
from atmospheric neutrino interactions in water, as detected by the 2.2 MeV capture gamma
in Super-K [6]. However, the Super-K analysis is limited by uncertainties on the detection
efficiencies for the 2.2 MeV gammas and on the flux of atmospheric neutrinos. Additionally,
neither the neutrino energy nor the momentum transfer to the nucleus can be measured
precisely. Therefore, it is difficult to incorporate these data into background predictions for
proton decay.

Therefore, there is a clear need for a dedicated measurement of neutron yield. Such detailed
measurement of the neutron multiplicity is possible in a beam with atmospheric neutrino-like
energy spectrum. We propose to build such an experiment. The Accelerator Neutrino Neu-
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tron Interaction Experiment would consist of a small, economical Water Cherenkov detector
deployable on the intense Booster Neutrino Beam (BNB) at Fermilab, and would largely rely
on existing infrastructure. The main deliverable from this experiment is a measurement of
the final-state neutron abundance as a function of momentum transfer from charged current
(CC) neutrino interactions. This measurement is similar to that shown in Fig 1, except that
we would reconstruct the total momentum transfer rather than visible energy and the ANNIE
detector will be optimized for efficient detection of captured neutrons produced in the fiducial
volume. Furthermore, it may be possible to separate the data between a variety of CC event
types and possibly neutral current (NC) interactions. These data will provide an essential
input to PDK and neutrino-interaction Monte Carlo models to aid in calculating detection
efficiencies, expected background rates, accurate limits, and confidence levels. They can also
be used to better constrain nuclear models of neutrino interaction physics and are therefore
interesting on their own right.

3 Potential Physics Impact

3.1 Understanding a Critical Background in Proton Decay

One of the “Big Ideas” in particle physics is the notion that at higher energies, the laws of
physics become increasingly symmetric and simple. In the late 1970s it was suggested that,
barring perturbations from other processes, the three running coupling constants become
similar in strength in the range of 1013 − 1016 GeV [7]. This convergence hints that the
electromagnetic, weak, and strong forces may actually be a single force with the differences
at low energy being due to the details of the exchange particle properties and the resulting
vacuum polarization. This so-called “Grand Unified Theory” (GUT) is a touchstone of par-
ticle physics in the late 20th and early 21st centuries. Theories ranging from supersymmetry
(SUSY) to a wide class of string theories all have this basic “Big Idea”. A major challenge
for experimental particle physics is how to determine if it is really true.

A convergence of the coupling constants at a very high “unification energy” implies that there
may be a single force that could connect quarks and leptons at that scale. Such reactions
would violate baryon (B) and lepton (L) number by the exchange of very heavy bosons with
masses in the range of the unification energy scale. Since that scale is far beyond the reach of
any conceivable accelerator, they would only manifest themselves at our low energy scale via
virtual particle exchange leading to rare reactions that would violate B and L. This would
mean that normal matter (e.g., protons, either free or in nuclei) would not be stable but
would decay with some very long lifetime. This phenomenon, generically called proton decay
although neutrons in nuclei are included, has been searched for in a series of experiments
dating back more than thirty years. Its discovery would be nothing short of revolutionary.

Proton decay final states depend on the details of a given theory. Experimentally, the modes
p → e + π0 and p → K+ + ν are common benchmarks. The former represents the lightest
anti-lepton plus meson final state, typical for the case where the first generation of quarks and
leptons are grouped in a single multiplet, as in SU(5). The second is typical of supersymmetric
grand unified theories where dimension-5 operators induce decays that span generations,
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hence requiring a strange quark. Current published limits from SK for these two modes are
8.2× 1033 and 5.9× 1033 years, respectively [8, 9].

3.1.1 p→ e+ π0

It is instructive to describe the analysis currently being used by the Super-K experiment.
This analysis consists of (1) selection of events in the detector that have three showering
tracks, (2) a requirement that at least one combination of tracks gives an invariant mass
close to that of the π0 (85-185 MeV), (3) a requirement that there was no follow-on Michel
electron (indicating that there was a muon in the event), and (4) that the invariant mass
be near that of the proton (800-1050 MeV) and the unbalanced momentum be less than 250
MeV/c. Figure 2 (reproduced from [8]) shows the invariant mass-unbalanced momentum
distributions for two versions of Super-K (the left plots have twice the number of PMTs as the
right plots) for the proton decay MC (top), atmospheric neutrino background MC (middle),
and data (bottom). At 0.141 Mton-years there are no candidates.

The selection efficiency of the Super-K analysis was estimated to be 45%, with an uncertainty
of 19% dominated by nuclear effects (mainly pion interactions in the oxygen nucleus). In the
center plots, the incursion of background events into the signal region is clearly seen. The MC
gives a background estimate of 2.1 ± 0.9 events/Mton-year, which is consistent with direct
measurements made in the K2K 1-kton near detector (1.63+0.42

−0.33(stat)+0.45
−0.51(syst) events/Mton-

year) [9].

According to the Super-K MC, about 81% of the background events are CC, with 47% being
events with one or more pions, and 28% being quasi-elastic. In many cases, a π0 is produced
by an energetic proton scattering in the water. These events could be rejected by means other
than invariant mass and unbalanced momentum. Neutron tagging has been proposed as a key
method for doing this. Many of these background-producing events should be accompanied
by one or more neutrons in the final state. This is because to look like a proton decay, there
needs to be significant hadronic activity in the event, and there are many ways to produce
secondary neutrons:

• direct interaction of an anti-neutrino on a proton, converting it into a neutron

• secondary (p,n) scattering of struck nucleons within the nucleus

• charge exchange reactions of energetic hadrons in the nucleus (e.g., π− + p→ n+ π0)

• de-excitation by neutron emission of the excited daughter nucleus

• capture of π− events by protons in the water, or by oxygen nuclei, followed by nuclear
breakup

• secondary neutron production by proton scattering in water

Unfortunately, simulations of these processes are not currently data-driven. It is thus not
possible to reliably predict the number of neutrons produced following a neutrino interaction.

9



Figure 2: The reconstructed kinematics of proton decay events in Super-K Monte Carlo
(a1,b1), compared with those of atmospheric neutrino Monte Carlo (a2,b2) and data (a3,b3).
Atmospheric neutrino events that fall in the signal region of (a2,b2) are enlarged (Ref [8]).
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Some experimental data from Super-K supports the idea that atmospheric neutrino interac-
tions in general might have accompanying neutrons but it has not been published and it is
thus not definite [6].

This is to be contrasted with signal proton decay events, which are expected to produce very
few secondary neutrons. Using general arguments, it is expected that more than 80% of all
proton decays should not have an accompanying neutron:

• For water, 20% of all protons are essentially free. If these decay, there is no neutron
produced as the π0 would decay before scattering in the water, and 400 MeV electrons
rarely make hadronic showers that result in free neutrons.

• Oxygen is a doubly-magic light nucleus, and hence one can use a shell model description
with some degree of confidence. Since two protons are therefore in the p1/2 valence shell,
if they decay to 15N , the resultant nucleus is bound and no neutron emission occurs
except by any final state interactions (FSI) inside the nucleus.

• Similarly, if one of the four protons in the p3/2 state decays, a proton drops down from
the p1/2 state emitting a 6 MeV gamma ray, but the nucleus does not break up except
by FSI.

• Finally, if one of the two s1/2 protons decays, there is a chance that the nucleus will
de-excite by emission of a neutron from one of the higher shells.

Detailed nuclear calculations by Ejiri [3] predict that only 8% of proton decays in oxygen
will result in neutron emission. This means that only approximately 6% (8% of 80%) of all
proton decays in water should result in neutrons (ignoring FSI production by proton decay
daughters). Therefore neutron tagging to reject atmospheric neutrino backgrounds incurs a
modest loss of signal efficiency. In this proposal our goal is to measure the neutron yield in
neutrino interactions as a function of momentum transfer. This will allow us to assess the
effectiveness of such strategy.

As an illustration, Figure 3 shows the sensitivity of Super-K (green) if it continues to run
another 35 years, assuming the expected background rate from atmospheric neutrinos remains
unchanged. Uncertainties in the background spectrum are taken into account, and the curves
shown are 90% c.l. limits. Also shown (in blue) is the sensitivity of a 0.5-Mton detector with
similar background estimations as Super-K running for a similar amount of time. Substantial
background reduction using neutron tagging techniques is expected to significantly improve
the sensitivity and discovery potential of very large WCh detectors. For example, the span
between the solid and dashed curves highlight the impact of such background reduction.
However, the precise background rejection efficiencies have not been demonstrated. ANNIE
will accurately evaluate and demonstrate the potential of this method.

3.1.2 p→ K+ + ν

As another example, for the p → K+ + ν mode, the K+ is below the Cherenkov threshold,
requiring a search for the decay of a kaon at rest. There is significant atmospheric neutrino
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There may be FSI-induced neutrons in some cases and for some modes (e.g., ⇡0 scattering in the

nucleus could occur, but K+ scattering would be rare), but it is also expected that not all nuclear de-

excitations from s1/2 states will give neutrons. In fact, more detailed nuclear calculations by Ejiri [58]

predict that only 8% of proton decays in oxygen will result in neutron emission. This means that only

0.80 x 0.08 = 6% of all proton decays in water should result in neutrons (ignoring FSI production by

proton decay daughters). Thus neutron tagging may be an e↵ective way to tag atmospheric neutrino

backgrounds for all modes of proton decay where significant momentum is transferred to the nucleus.

For ASDC we have assumed the extreme cases of 90% and 0% reduction to see the e↵ect of neutron

tagging. Since currently HK has only an 18% e�ciency for detecting neutrons with 40% coverage, it

is assumed that neutron tagging in HK with the planned 20% coverage is negligible. If HK added

gadolinium this would change, however.

FIG. 15. Estimated sensitivity of an ASDC experiment compared to Super-K. The improvement is due both to

larger size and improved background reduction. If proposed long baseline detectors are built, Hyper-K would

be better but LBNE worse for detecting this mode of proton decay. The upper ASDC curve assumes 90%

background reduction due to neutron tagging, whereas the lower curve assumes no neutron tagging.

Thus we estimate that backgrounds in an ASDC with very e�cient ('100%) neutron tagging via

the 2.2 MeV gamma from will be reduced a factor of 10 compared to SK. Figure 15 shows the expected

sensitivity at 90% c.l. for detecting proton decay via this channel in SK and in an ASDC experiment

with neutron tagging and with no neutron tagging. Somewhat arbitrarily, a 2025 start date is assumed.

Thus in this mode a 100 kT ASDC experiment would catch up with SK in sensitivity in a little over

three years, despite the fact that SK would have been running for over thirty years at that point.

If Hyper-Kamiokande is built, it would be better in this particular mode, but an ASDC experiment
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Figure 3: Proton decay sensitivity in the p → e + π0 channel for Super-K (black), Hyper-K
(red), the LBNF 34-kton LAr detector (green), and a hypothetical 100-kton water volume
(blue). For Hyper-K and the 100 kton water volume two scenarios are presented: sensitivity
including atmospheric neutrino backgrounds (solid) and limits and sensitivity with 90% of
backgrounds removed (dashed).
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background in the dominant (63%) decay mode of K+ → µ+ νµ. Super-K uses the prompt
nuclear de-excitation gamma ray (6.3 MeV) from the residual 15N nucleus to reject back-
ground events. Analysis of the hadronic mode, K+ → π0π+ (21%), is hampered by the fact
that βµ+ = 0.87, so that the amount of Cherenkov light emitted by the decay muon (from the
π+) is near the detectable threshold. Expectations are that background events will be seen in
this mode at a rate of 8 events/Mton-year. The combined efficiency for the prompt gamma
tag of K+ → µ+ νµ plus K+ → π0π+ is 14%± 2% with an expected background of 1.2± 0.4
events/100-kton/year. Thus even though Super-K does not currently have a candidate, it is
expected that this mode will soon start generating background. If a significant fraction of
these events could be rejected, sensitivity would continue to rise relatively linearly in a very
large detector.

3.2 Improving Identification of Supernova Neutrino Interactions

Supernova explosions throughout the universe left behind a diffuse supernova background of
neutrinos that may be detected on Earth [10]. The flux and spectrum of this background
contains information about the rate of supernova explosions as well as their average neutrino
temperature. The main detection channel for supernova relic neutrinos in water Cherenkov
detectors comes from positrons emitted by inverse β decay reactions. Above ∼ 20 MeV, the
dominant background is due to the decay of sub-Cherenkov threshold muons from atmospheric
neutrino interactions. This could be greatly reduced by tagging the neutron that accompa-
nies each inverse β reaction. A 200-kton detector loaded with gadolinium and at sufficient
depth may be within reach of detecting this neutrino flux [11, 12]. In order to achieve this,
understanding neutron yields can be used to help statistically discriminate among various
radiogenic, spallation and neutrino backgrounds.

A nearby core collapse supernova will provide a wealth of information via its neutrino signal.
The neutrinos are emitted in a burst of a few tens of seconds duration, with about half in
the first second. Energies are in the few tens of MeV range, and the luminosity is divided
roughly equally among flavors. Neutrino densities in the core are so high that neutrino-
neutrino scattering plays a significant role in the dynamics, leading to non-linear oscillation
patterns, highly sensitive to fundamental neutrino properties and even new physics. Accurate
measurements of the energies, flavors, and time dependent fluxes would also allow one to set
limits on coupling to axions, large extra dimensions, and other exotic physics [13]. From
these details, one could also learn about the explosion mechanism, accretion, neutron star
cooling, and possible transitions to quark matter or to a black hole. Neutron tagging would
be essential in building a more complete picture of the SN neutrino flux, helping to more
efficiently identify neutral current interactions, and separate neutrino-nucleus scattering in
the water, which do not produce any neutrons.

3.3 Testing Nuclear Models of Neutrino Interactions

There is growing interest among the neutrino cross-section community in better understand-
ing nuclear effects on neutrino interactions. Most of the current and future long-baseline
neutrino oscillation experiments are designed to measure neutrinos with energies below 10
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GeV. Nuclear effects play a significant role in this regime, as demonstrated by the recent T2K
oscillation result [14], where the neutrino interaction model is the largest systematic error.

The MiniBooNE experiment has published a first double differential cross section for CC
quasi-elastic (CCQE) interactions [15, 16]. Many aspects of this precision measurement are
not understood by traditional nuclear models based on the impulse approximation [17]. The
MiniBooNE data may be better described by models including two-body currents, where low-
energy neutrinos scatter off correlated pairs of nucleons [18, 19]. Confirming such processes
and incorporating them into oscillation analyses is now a major goal of the cross-section
community. A predicted consequence of two-body currents is a higher multiplicity of final-
state nucleons [18]. An experiment, like ANNIE, with neutron tagging abilities would provide
a unique opportunity to study some of these effects.

Final-state neutrons can also be used used in the statistical separation between NC interac-
tions and CC interactions. In neutrino-mode, neutron multiplicity is expected to be lower
for CC interactions. This feature can be used to distinguish νe oscillation candidates from
NC backgrounds, such as π0 or photon production [20]. ANNIE is in a position to study the
feasibility of this technique in water.

In addition, one of the systematics in neutrino oscillation measurements, such as those to
be performed by LBNF, is the uncertainty in the reconstructed energy of events identified
as being CCQE. One way of understanding and controlling these uncertainties is to look at
the multiplicity of final state nucleons, protons and neutrons. For this reason, one of the
key neutrino interaction measurements to be undertaken by the next generation of liquid
argon (LAr) neutrino detectors is the measurement of final states described as: 0π + Xp +
Xn, namely no pions and some number of protons and neutrons. LAr TPCs are well suited
to measure the number of final state protons. However the number of final-state neutrons
is expected to be difficult. ANNIE will be in a position to measure these states, and thus
enhance our knowledge of neutrino interactions as well as complement the LAr short and
long baseline programs.

3.4 Designing a Near Detector for Future Long Baseline Experiments

Hyper-Kamiokande (Hyper-K) is a potential next generation underground water Cherenkov
detector with a total (fiducial) mass of 0.99 (0.56) Mton tons, approximately 20 (25) times
larger than that of Super-Kamiokande (Super-K). It is designed as a detector capable of
observing accelerator, atmospheric and solar neutrinos, proton decays, and neutrinos from
other astrophysical origins, providing a very rich physics portfolio. One of the main goals of
Hyper-K is the study of the CP asymmetry in the lepton sector using accelerator neutrino
and anti-neutrino beams.

The accelerator neutrino and anti-neutrino event rate observed at Hyper-K depends on the
oscillation probability, neutrino flux, neutrino interaction cross-section, detection efficiency,
and the detector fiducial mass of the Hyper-K detector. To extract estimates of the oscillation
parameters from data, one must model the neutrino flux, cross-section and detection efficiency
with sufficient precision. This is achieved with near detectors.
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The TITUS (Tokai Intermediate Tank for Unoscillated Spectrum) detector is a proposed
near detector for the Hyper-K experiment lead by some of our UK collaborators. The main
characteristics of this detector are: a 4π phase-space coverage, a water target similarly to the
detector at the far site (Super-K) and the same flux as at the far detector, being situated at
about 2 km from the beam target.

The main disadvantage of a WCh detector is the inability to separate positively and negatively
charged leptons. This proposed detector aims to overcome this issue using a Gd-loaded WCh
detector by detecting the presence of neutrons in the final state. This ability is especially
important for a CP violation measurement where the wrong sign contribution to the neutrino
flux should be well understood.

The TITUS strategy is to take advantage of both the Gd-doping and LAPPDs in a similar
manner to the ANNIE design. Thanks to the Gd doping, we will be able to tag the neutrons in
the final states. The neutron multiplicity is measured after the FSI (Final State Interactions)
is taken into account, so it may not be identical to the neutrino interaction process, as several
other processes can occur before the nucleon leaves the nucleus. However, we should be able
to relate the final state interaction to the original process in most cases.

In TITUS, the very precise timing and spacial resolution of the LAPPDs will help to both
reduce the background and tag the neutron thanks to a much improved vertex capability that
will directly impact the reconstruction. ANNIE, as a Gd-loaded WC detector instrumented
with LAPPDs, allows us to perform studies that are directly relevant to the design and
planning of TITUS. It is extremely useful that ANNIE (if located on-axis of the Booster
Neutrino beam line) will run at energies similar to those used in T2K and planned for Hyper-
K.

4 Experimental Overview

We propose making a systematic measurement of the neutron yield from neutrino interactions
of energies similar to atmospheric neutrinos. We can optimally carry out this measurement
by utilizing the existing “SciBooNE” hall which sits in a prime experimental location on the
FNAL booster beamline (Fig 4). This hall is currently unused, however it is being investigated
as a potential location for the cryogenic system of LAr1ND. The laboratory is currently
exploring alternative locations for this system and we have explored alternative locations for
ANNIE in Sec. 5. We plan to put a Gd-doped water target sufficiently instrumented in front
of a muon range detector to be able to stop and detect the capture gammas from primary and
secondary neutrons. We have named this test experiment: the Accelerator Neutrino Neutron
Interaction Experiment, or ANNIE.

4.1 Physics of the Measurement

To first order, neutrino interactions with nucleii will predictably yield either 1 or 0 neutrons
in the final state: Neutrinos interacting by charged current (CC) exchange will produce a
final-state proton and no additional neutrons, whereas anti-neutrinos produce exactly one
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Figure 4: ANNIE in the SciBooNE Hall.

final-state neutron. High energy neutral current (NC) interactions tend to produce either
protons or neutrons, proportional to the abundance of each nucleon in water.

However, GeV-scale (anti-)neutrinos can produce additional neutrons through the complex
interplay of higher-order and multi-scale nuclear physics:

• secondary (p,n) scattering of struck nucleons within the nucleus

• charge exchange reactions of energetic hadrons in the nucleus (e.g., π− + p→ n+ π0)

• de-excitation by neutron emission of the excited daughter nucleus

• capture of π− events by protons in the water, or by oxygen nuclei, followed by nuclear
breakup

• Meson Exchange Currents (MEC), where the neutrino interacts with a correlated pair
of nucleons, rather than a single proton or neutron.

• secondary neutron production by proton or neutron scattering in water

Consequently, neutron multiplicity distributions tend to peak at 0 or 1 with long tails. Given
the highly non-gaussian shape of these distributions, parameters such as the mean neutron
yield are not necessarily illuminating. At the simplest level, we want to measure P(N=0),
P(N=1), and P(N>1) with particular attention to any excesses beyond tree-level expecta-
tions. These measurements, binned by interaction type and kinematics, will provide a strong
handle to constrain nuclear models, even in the absence of detailed shape information beyond
P(N=2).
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Figure 5: Neutrino flux spectra expected in the SciBooNE Hall from the BNB.

When using the presence of final state neutrons to separate experimental backgrounds in
various physics analyses, the shape of the far tail becomes increasingly less important with
higher N. For example, in the case of proton decay we are interested in the efficiency for
detecting any neutrons at all. The rate for atmospheric neutrinos faking a proton decay (f)
is given by:

f = P (0) + P (1)(1− ε) + P (2)(1− ε)2 + P (3)(1− ε)3 + .... (1)

where P(N) is the probability of N neutrons given a background event, and ε is the neutron
detection efficiency. For high neutron detection efficiencies such as the expected 68% in a Gd-
loaded Super-K fill, higher order terms quickly drop off, and f can be accurately estimated
by the integral of P(N>2) without any further shape information.

4.2 Experimental Design and Status

ANNIE would run using the Booster Neutrino Beam (BNB). This beam runs at 7.5 Hz, with
roughly 4x1012 protons-on-target (POT) per spill. These are delivered in 81 bunches over a
1.6 µs spill time to a target and horn combination 100 m upstream of the SciBooNE hall.
This beam is about 93% pure νµ (when running in neutrino mode) and has a spectrum that
peaks at about 700 MeV (Fig. 5). We expect on the order of 7,000 charged current muon
neutrino interactions per ton per 1020 POT over a period of 6 months. The neutrino rates at
various sites at Fermilab are discussed in detail in Sec 5.

There are several sources of neutron background in ANNIE. These arise from neutrino inter-
actions in the rock and dirt upstream of the detector (dirt neutrons) as well as from ambient
neutrons from the beam dump which travel mostly through air and scatter into the hall (sky
shine). This background and steps to measure and suppress it are described in Sec 6.

The footprint for the water target is essentially that of the SciBooNE detector, a cylindrical
volume roughly 3.8 m long and 2.3 m in diameter. The plan is to contain the target volume
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in a single water tank made of aluminum with a plastic liner. The mechanical design of
the water target using an existing tank from UChicago is described in Sec 7. The details of
the gadolinium loading including a filtration system provided by UC Irvine are discussed in
Sec. 8. The target will be instrumented by 60 to 100 eight-inch PMTs. These PMTs are
available from UC Irvine and their status is described in Sec. 9. An iron-scintillator sandwich
detector that was used to range out and fit the direction of daughter muons from neutrino
interactions in the SciBooNE target is available in the experimental hall [25]. Parts of this
detector, called the Muon Range Detector (MRD) could be used for ANNIE as discussed in
Sec. 10.

In order to select events away from the detector wall, we propose to use vertex reconstruction
based on the arrival time of emitted light. This is the simplest option, requiring neither
segmentation of the already small target nor the introduction of new materials with unknown
neutron capture properties. Given the few-meter length scale of the detector, timing based
reconstruction is a challenge. Typical drift times for direct light are below 10 nanoseconds,
so it is unlikely that conventional PMTs, with few-nanosecond time resolutions will be good
enough to localize the vertex. We intend to use early commercial prototypes of Large Area
Picosecond Photodetectors (LAPPDs) with single photoelectron time resolutions below 100
picoseconds. A description of the status of these photodetectors is given in Sec 9.

Neutrino interactions in the water target will produce a flash of light with no signal in a front
anti-coincidence counter. Events can be selected so that they are “CCQE-like”, i.e., there is
a single muon track in the MRD that points back to the rough position of the vertex in the
target. Following a valid CCQE candidate, neutron capture events must be detected in the
target for about 100 µs, or about three capture times. If the vertex is restricted to the central
volume of the water target, then there are several hadron scattering lengths in all directions,
which should be enough to slow down and stop neutrons in the range of 110 MeV. Higher
energy neutrons could require external counters. The readout and electronics required to
record both neutrino and neutron capture data are described in Sec 11.

The interaction point of each neutrino can be reconstructed using several different approaches,
thus providing an effective handle on the location of the interaction point. The ideal method is
to fit for the earliest light emitted along the muon track, using the track parameters extracted
from the muon range detector. It may be possible to use the isotropic light emitted from the
neutron captures themselves to determine where in the volume the captures are happening.
By measuring the muon direction to a precision of roughly 10◦ and the muon momentum
(from a range measurement) to roughly 20%, we will be able to accurately reconstruct the
multiplicity as a function of the momentum transfer to the nucleus from the neutrino. This
is desirable in order to facilitate the incorporation of this measurement into an atmospheric
neutrino MC which is relevant to the proton decay searches.

While basic simulations of the ANNIE detector already exist, we will are in the process of
building a fully integrated Geant4 simulation of the experiment. Through these simulations,
we can address the technical design issues required for the success of this effort. The current
status of ANNIE simulations is described in Sec. 12.
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5 Beam and Site Requirements

In this section we describe the beam and site requirements for the ANNIE experiment. Given
ANNIE’s physics goals we are interested in studying neutrino interactions with energies com-
parable to those of atmospheric neutrinos that result in potential background for proton
decay. The beam must be sufficiently intense in order to provide the needed statistical power
over the lifetime of the experiment. At a given site the beam should have a sufficiently low
duty cycle to limit multi-interaction pileup (specially from rock-interactions).

5.1 Neutrino Beam Spectrum and Intensity

There are two existing neutrino beams currently running at Fermilab, the Booster Neutrino
Beam (BNB) and the Neutrinos from the Main Injector (NuMI) beam. The BNB impinges
8.89 GeV/c protons from the booster on a beryllium target, with 4× 1012 delivered in a spill
of approximately 1.6 µs at a frequency of 7.5 Hz. The NuMI beam throws 120 GeV/c protons
from the main injector (MI) on a carbon target. The proton beam contains 4×1013 delivered
in a spill of approximately 10 µs at frequency of 0.6 Hz (a 1.67 s cycle). The number of
protons incident on the target is defined as protons on target (POT). The projected POT
per year for the BNB is about 2× 1020 POT and for NuMI it should ramp up from 3× 1020

to 6× 1020 over the next 4 years.

The BNB and NuMI neutrino spectra differ significantly on the axis of the beam. For this
location the BNB peaks at 0.7 GeV (Fig. 5) while NuMI peaks at 6 GeV in its medium energy
configuration. If an off-axis location is chosen for NuMI the neutrino spectrum can peak as
low as 2 GeV (Fig. 8).

Figure 6 shows the spectrum of the BNB neutrino spectrum overlaid with the region of
interest which represents the portion of the atmospheric neutrino flux that dominates the
production of proton decay background events. It is clear from this figure that the the BNB
on-axis location possesses the ideal neutrino spectrum peaked in the region of interest. In
the next section we detail the rates in the region of interest for various site locations for these
two neutrino beams.

5.2 Neutrino Interaction Rates at Different Sites

ANNIE will require collecting data from sufficient neutrino interactions to make accurate
statements about neutron yield in an inclusive sample of neutrino interactions. The initial
goal is to be able to describe distributions of neutron yield versus various kinematic ob-
servables. A more demanding goal is to study neutron yields for specific event classes. For
instance studying separately the neutron yield for quasi-elastic and deep inelastic charged
current as well as neutral current neutrino interactions. Eventually, with improved detector
performance, we will be able to identify explicitly proton decay-like backgrounds at rates
that are statistically significant. It is expected that this would require tens of thousands of
neutrino interactions a year.
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ν-type Total Interactions Charged Current Neutral Current

νµ 9892 6991 2900

ν̄µ 130 83 47

νe 71 51 20

ν̄e 3.0 2.0 1.0

Table 1: Rates expected in 1 ton of water with 1x1020 POT exposure at the SciBooNE Hall.

When studying the potential neutrino interaction rates and spectra of the existing neutrino
beams, the siting of the detector with respect to the beam must be considered. We have
studied various detector location with potential for siting the ANNIE detector. While these
potential locations might not currently be available, it builds a picture of what flexibility, if
any, is available in order to carry out this measurement.

As potential ANNIE detector locations in the BNB we have considered the SciBooNE hall
(on-axis) at 100 m from the target and a location on the surface of the SciBooNE hall (80
mrad or 4.6◦ off-axis). In NuMI we have considered an on-axis location in the MINOS near
detector (MINOS ND) hall at 1 km from the target as well as two off-axis locations roughly
at the same distance. The first off-axis location for the NuMI beam is in the NOvA near
detector (NOvA ND) hall which is at 14 mrad or 0.8◦ from the beam axis. The second
location is the NOvA NDOS hall on the surface above the MINOS ND hall at 111 mrad off-
axis. The SciBooNE hall, the MINOS ND hall and the NOvA NDOS locations have potential
space available for the size of the detector including infrastructure for installing a detector.
The NOvA ND hall currently cannot fit the detector and it is occupied for the foreseeable
future. The SciBooNE surface is shown as an example of an off-axis location but there is no
infrastructure available at this location.

The NuMI beam simulation data has been obtained from Flugg flux files from 2013 as pro-
vided by the NuMI-X group. The files in dk2nu format were processed using software from
NOvA experiment designed to propagate the flux to the designated locations. The BNB flux
simulated data has been provided by Zarko Pavlovic (MiniBooNE) appropriately propagated
to the SciBoone hall and surface locations.

The SciBooNE hall as it has been described in Section 4 is on axis from the BNB at 8 m below
the surface. The spectrum as shown in Figure 5 peaks at 0.7 GeV. The rates expected in 1 ton
of water (the approximate usable fiducial volume) per year considering 2 × 1020 POT/year
for BNB are about 20K neutrino interactions, 14K of those would be νµ CC interactions. As
mentioned before this spectrum peaks ideally in the region of interest and has the desired rate
of neutrino interactions per year. Detailed rates are shown in Table 1 per ton per 1 × 1020

POT .

We have also considered an off-axis location for BNB. Since there are no other facilities or
halls built around the BNB, we have used the surface as a point of reference. This is 8 m
above the axis of the beam at a distance of 100 m from the target which results in an angle
of 80 mrad or 4.6◦ from the axis of the beam. There is no infrastructure at this location
in which to build this experiment. The flux at this location drops by a factor of 8 from
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Figure 6: Neutrino flux spectra expected in the SciBooNE Hall from the BNB. Rates are
per ton per 1× 1020 POT. The shaded region indicates the energy range of the atmospheric
neutrino flux that dominates the production of proton decay background events.

ν-type Total Interactions Charged Current Neutral Current

νµ 1251 847 404

ν̄µ 44 26 18

νe 24 17 6.9

ν̄e 1.5 1.0 0.5

Table 2: Rates expected in 1 ton of water with 1x1020 POT exposure at the surface of the
SciBooNE Hall.

the on-axis location as shown in Table 2. The spectrum peaks at a lower energy as shown
in Figure 7. This is a significant drop that would lengthen the experiment’s planned data
taking by a large factor.

In the NuMI beam we have considered the on-axis location in the MINOS ND hall. While the
rates are high (over 200k neutrino interactions), the beam spectra peaks at 6 GeV thus making
the rates in the region of interest much lower. This also will increase event interaction pileup
rate from neutrino interactions occurring in the rock. Off-axis locations that shift the peak to
the relevant portion of the neutrino spectrum are more interesting. For example the neutrino
spectrum at the NOvA ND hall which is 14 mrad off-axis is shown in Figure 8 peaking at
2 GeV. The rates expected in this case are around 45K neutrino interactions considering
3 × 1020 POT/year for NuMI (see Table 3). There is however no space in the NOvA ND
detector hall and no other similar off-axis locations are available in the underground tunnels.
The hall was in fact specifically excavated for the NOvA ND. This case is shown as an example
of what is the minimum distance that we would need to be off-axis from the NuMI beam
in its medium energy configuration in order to obtain a neutrino spectrum usable for this
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Figure 7: Neutrino flux spectra expected at the SciBooNE surface from the BNB. Rates are
per ton per 1× 1020 POT.

ν-type Total Interactions Charged Current Neutral Current

νµ 16563 12074 4489

ν̄µ 636 445 191

νe 300 221 79

ν̄e 28 20 7.9

Table 3: Rates expected in 1 ton of water with 1x1020 POT exposure at the NOvA Near
Detector Hall.

experiment.

The last location considered is the NOvA NDOS hall on the surface of the MINOS and NOvA
ND halls. This location is important to consider as there is the infrastructure available to
potentially install the ANNIE detector. The neutrino spectra at this location still have a
peak around 2 GeV but a significant fraction of the spectrum shifts to energies below 1 GeV
(Figure 9). However, the rates as shown in Table 4 drop by several orders of magnitude to
roughly 400 muon neutrino interactions per year in the fiducial volume of the detector. This
rate is too low to be able to carry out any of the measurements proposed.

Finally, we show the rates for all locations considered in Table 5 which shows the fraction
of the spectrum that is in the region of interest between 0.25 to 2.5 GeV. It is of note that
the SciBooNE hall and the NuMI off-axis locations have the larger fraction of neutrinos in
the interesting region with the NDOS hall showing the lowest rates. From this table we can
conclude that the SciBooNE hall represents the optimal solution with the highest rate and
potential infrastructure available. An off-axis location on the NuMI beam (at no less than
14 mrad but significantly less than 111 mrad) would also be optimal but such infrastructure
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Figure 8: Neutrino flux spectra expected at the Nova Near Detector Hall from the NuMI
beam. Rates are per ton per 1× 1020 POT.
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Figure 9: Neutrino flux spectra expected at the Nova NDOS Hall from the NuMI beam.
Rates are per ton per 1× 1020 POT.
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ν-type Total Interactions Charged Current Neutral Current

νµ 130 91 39

ν̄µ 32 21 11

νe 6.2 4.5 1.7

ν̄e 1.5 1.0 0.5

Table 4: Rates expected in 1 ton of water with 1x1020 POT exposure at the Nova Near
Detector On Surface (NDOS) Hall.

Location νµ CC [0.25-2.5 GeV] νµ CC [0-10 GeV] Percentage

SciBooNE Hall 6626 6991 95%

SciBooNE surface 708 847 84%

MINOS ND 3362 168078 2%

NOvA ND 8115 12074 67%

NDOS 76 91 84%

Table 5: Rates of νµ CC interactions expected in 1 ton of water with 1x1020 POT exposure at
two different energy ranges, and the percentage of events between 0.25-2.5 GeV, for different
detector locations.

does not currently exist.

5.3 Neutrino Event Interactions Pileup Rates

Another consideration beyond the rates and spectra of in-detector neutrino interactions is
the probability of seeing multiple events in one beam spill. Ideally we would want to collect
all light from one interaction before a second starts. We have developed a toy Monte Carlo
simulation to estimate the event interaction pileup rates of both in-detector and outside of
detector (occurring in the rock) neutrino interactions.

In order to study these rates, we must consider the beam structure. Each beam has a different
time structure. For BNB it is one booster batch of protons per beam spill spread over 1.6
µs in 84 bunches of protons separated by 19 ns from one another. For NuMI we have 5 or 6
batches per spill spread in 84 bunches each over 10 µs.

The relevance of the fine structure depends on the typical time length of the event. We can
define a characteristic time τ as the time that it takes a Cherenkov photon to travel from one
corner to the opposite, i.e. the maximum possible distance, inside the detector. Setting a
window of 4-5 τ is a conservative expectation for the time required to collect all the photons
associated with a vertex. For our initial studies, we use a window of ≈ 100 ns.

Considering the neutrino flux at a given location, the detector size and cross sections, we
can find the corresponding expected number of in-detector events per spill. To account for
the rock events we have used a MC based (average) rock to in-detector ratio from complete
Monte Carlo simulations of each of the relevant experiments. While the SciBooNE and NOvA
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ND hall are the most interesting, the MINOS ND location is calculated for comparison of an
on-axis high duty-cycle beam location. The ratios are shown in Table 6.

Location Energy Peak Ratio rock/in-detector

SciBooNE 0.6 GeV 3

NOvA ND 2 GeV 4

MINOS ND 6 GeV 10

Table 6: Average ratio of neutrino interactions occurring in the detector to neutrino interac-
tions outside of the detector (rock events).

We then use the resulting expected number of events (in-detector plus rock) per spill as the
parameter for a Poisson distribution to get a simulated number of events for a given spill,
and the time structure of the spill itself as a probability distribution for event start times.
We count the instances when a pair of event time windows overlap, and repeat for 20000
simulated spills.

For the total mass of the ANNIE detector we find that the number of muon neutrino interac-
tions per spill is low (less than 1) for the SciBooNE and NOvA ND locations and very high
as expected for the MINOS ND (Table 7). The rates are below 1 Hz for the former locations
and at 12 Hz for the latter. From this study is concluded that the on-axis location for the
BNB beam and the slightly off-axis location for NuMI result in ideal manageable neutrino
event interaction pileup rates whereas the on-axis location in NuMI has too high rates to be
viable even if the in-detector interactions in the interesting energy range are comparable to
the other more ideal sites. This study did not take into consideration cosmic ray pileup. A
discussion of these rates as it affects the electronics design can found in Sect. 11.

Location νµ events/POT/ton νµ events/spill Avg. pileup/spill

SciBooNE 2.80 ∗ 10−16 0.03 5.0× 10−5

NOvA ND 6.04 ∗ 10−16 0.65 0.0045

MINOS ND 1.85 ∗ 10−14 20 3.76

Table 7: Expected number of events per spill (rock and contained) and corresponding pileup
rates for different detector locations.

6 Neutron Backgrounds

Several sources introduce neutron backgrounds to the ANNIE detector, which will require
detailed understanding. A continuum of ambient neutrons from cosmic radiation and long-
lived isotopes will be present, but can be largely suppressed by strict time cuts around the
beam window. Somewhat more challenging are the correlated backgrounds tied to the time
structure of the beam, these are:

• Dirt Neutrons: neutrons produced by interactions of beam neutrinos with the rock and
dirt, upstream of the ANNIE detector.
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Figure 1.10: Skyshine events in SciBar at KEK. Shown is the fine time structure of
a single strip’s hits in SciBar, during the K2K neutrino data runs.

60 m 90 m
beam-on beam off beam-on beam-off

# spills 25,589 10,072 33,441 10,233
singles (1) 16 0 14 0
singles (2) 37 0 20 1
coincidences 5 0 4 0

Table 1.6: BNB skyshine test results.

1.5 Non-Neutrino Backgrounds

We anticipate background activity in the detector caused by sources other than neu-
trino interactions in the fiducial volume. They fall into two broad categories: beam
related and beam unrelated backgrounds, described below.

Beam Related Backgrounds

The two most significant beam related backgrounds are dirt neutrinos and neutron
skyshine. Dirt neutrinos interact in the earth around the detector hall, sending ener-
getic particles into the detector, and skyshine is the flux of neutrons from the decay
pipe or beam dump that are initially projected into the air but are scattered back
toward the ground and interact in the detector. Experience with MiniBooNE indi-
cates that dirt neutrinos form a negligible background for charged current events.
The expected effect on neutral current analyses is also small due primarily to the lack
of a high energy tail in the BNB flux.

20

Figure 10: A plot showing the fine time structure of single strip hits in the SciBar detector
at KEK. Each successive bunch sits on top of an increasing pedestal of sky shine neutrons.

• Sky Shine: ambient neutrons from the beam dump, which travel through air and scatter
into ANNIE Hall.

The general problem of sky shine has been discussed in several documents [21, 22]. The
SciBooNE collaboration examined the issue at the SciBooNE Hall [23, 24]. Figure 10 helps
illustrate this phenomenon. The fine structure of single strip hits in the SciBar detector
deployed at KEK is consistent with successive bunches of signal on top of an increasing
pedestal of background hits from sky shine. Sky shine rates were also measured at KEK and
a study was produced by the SciBooNE collaboration in preparation for moving the SciBar
detector to the BNB.

Neutrinos from the BNB can interact with dirt and rock upstream of the experimental hall,
producing a correlated background. While this background may appear slow with respect to
the prompt component of an event, it is fast on the time scale of Gd neutron captures, and
will therefore present a problem for neutron counting.

6.1 Understanding Neutron Backgrounds with ANNIE

It is thus important to carry out a detailed study of neutrons in the SciBooNE Hall. We
must understand rates, energies, and stopping distances in various depths of water. For this
purpose, we propose a series of studies using the proposed ANNIE water volume. Potentially
we could also use a gas-phase TPC developed for use in the Double Chooz experiment, known
as the Double Chooz Time Projection Chamber (DCTPC), built by a group at MIT.

We will seek to understand background rates directly in our target water volume. We propose
to develop techniques similar to those used by the SciBooNE collaboration. Figure 11 shows
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Figure 11: The distribution of on-beamtime events in the upward-pointing, y direction in
the SciBooNE detector (left), and the same distribution for hits before and after the beam
window showing an excess towards the top of the detector.

how non-uniformity in the vertex distributions of SciBooNE detector were used to identify
the sky shine background. Selecting the number of events within the narrow beam window,
vertices are reconstructed uniformly throughout the volume. However, when selecting a long
window before and after the beam, a large number of vertices are reconstructed with a bias
towards the top of the detector. This points to the specific background from sky shine.
We can study non-uniformities in the neutron capture points, even without precision vertex
reconstruction, by limiting the Gd-loaded water volume to a smaller portion of the total
water volume. If this Gd-loaded target is transparent and movable, we can study how rates
vary from top to bottom and in the beam direction, for beam-on events with no interaction
and the water volume and for bunches with full-contained interactions (see Fig. 12).

In addition, we could use the DCTPC which is sensitive to neutrons ranging from a few keV
to tens of MeV (see Fig.13). With a change in pressure and and target gas, the detector
can be made sensitive up to 100 MeV. DCTPC has the advantage that it can reconstruct
both the energy of the neutrons (from the recoil energy) and directionality. This could aid
in pointing to where the expected backgrounds are coming from. Using the modified ANNIE
volume and the DCTPC, it will be possible to compare in situ studies with direct ex situ
measurements. If successful, the ANNIE collaboration may decide to build a neutron monitor
based on DCTPC technology. The MIT group has expressed interest in collaborating in this
aspect of ANNIE.
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Figure 12: A schematic showing a concept for ANNIE with a smaller, transparent Gd-loaded
volume contained within a pure water volume. The inner volume can be moved around within
the full tank to study how neutron capture rates very as a function of depth in the detector
and distance from the beam.
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Figure 13: A schematic showing the operating principles behind DCTPC.
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7 Mechanical Design of the Water Target

The baseline ANNIE design will make use of an existing pressure vessel, used for the cosmic-
ray balloon experiment RICH, developed by Dietrich Mueller’s group at the University of
Chicago. The vessel is an aluminum tank, roughly 4.76 meters long and 2.29 meters wide,
shown in Fig 14. Stress simulations show that the tank can withhold the stresses of a complete
water fill. Plans are under way to perform a water-fill test and verify the integrity of the
vessel. The tank is segmented, consisting of three parts: a central barrel and two dome-
shaped end-caps. These three segments are joined by bolts at flanged ends with an O-ring
between. Together, the barrel and two domes measure 4.76 meters (187.5 inches) long which
will not fit in the SciBooNE hall. However, with a flat, reinforced steel flange to blank off one
of the sides, the barrel plus one dome is an appropriate length of 3.77 meters (148.5 inches).
This configuration will fit in the SciBooNE hall together with the MRD, as shown in Fig 15,
leaving more than a foot of leeway. The design for the blank flange and stress studies are
shown in Figure 16. The tank has one access port, already built-in, which will be used to
feed through the cabling for our photosensors.

This 3.77 meter long and 2.29 meter diameter configuration will sit horizontally on a saddle
consisting of three U-shaped steel yokes. Holding the central axis of the cylinder at 2.13
meters (84 inches) in line with the center of the BNB. The full detector system, including
the water volume and MRD is shown in Figure 15.

The aluminum inner-surface of the tank raises concerns about water corrosion and reactivity
with Gd salts. Two precautions will be taken to guard against this. First and foremost, the
inner volume of the tank will be lined with a thermo-sealed plastic bag. Thickness of the
plastic will be chosen to minimize the risk of puncture. Work is underway to determine how
best to cover any sharp seem, rivets, and edges. We are also exploring glass epoxy coatings,
which could be used to further prevent against contact between aluminum and water, should
any punctures form.

The plastic liner will be held to shape by a plastic or steel support skeleton, which will double
as the support structure for the photosensors. The skeleton may consist of two concentric
cylinders, one encompassing the full water volume and a second, smaller structure surrounding
a smaller volume, approaching the size of our target volume. The first run of ANNIE will likely
make use of the smaller volume to instrument the fiducial mass with higher angular coverage,
given a small batch of first LAPPDs. This inner structure may eventually be removed, the
LAPPDs placed directly around the full volume, as prospects for high coverage improve. A
second run of ANNIE will have 50-100 LAPPDs which would enable more efficient use of the
target volume, as discussed in Section 12. One simple possibility for attaching photosensors
to the skeleton is the use of water-proof velcro, rated to hold against weights much larger
than those of the LAPPDs. The velcro fixtures would make the photosensor coverage easily
adaptable and modular for various runs of ANNIE.
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Figure 14: Dimensions of the UChicago water tank to be used for the ANNIE target volume.
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Figure 15: The ANNIE tank, mounted on steel saddles, shown with the MRD.
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Figure 16: Deflection (top) and stress (bottom) on the ANNIE endplate.

8 Gadolinium Loading

8.1 Neutron Capture in Water

The fate of neutrons liberated in light water is first to be thermalized via collisions, primarily
with free protons, then to be captured by a proton or oxygen nucleus. The cross sections for
these capture reactions are 0.33 barns and 0.19 millibarns, respectively, so to first approxi-
mation every thermal neutron is captured on a free proton via the reaction n + p → d + γ.
The resulting gamma has an energy of 2.2 MeV and makes very little detectable light since
the Compton scattered electron is close to Cherenkov threshold. The entire sequence from
liberation to capture takes around 200 microseconds, with only a very small dependence (plus
or minus a few µs) on initial neutron energy.

However, the situation is much improved by adding a water-soluble gadolinium (Gd) com-
pound, gadolinium chloride, GdCl3, or the less reactive though also less soluble gadolinium
sulfate, Gd2(SO4)3, to the water. Naturally occurring gadolinium has a neutron capture cross
section of 49,700 barns, and these captures produce an 8.0 MeV gamma cascade, easily seen
in typical water Cherenkov detector configurations. Due to the much larger cross section
of gadolinium, adding just 0.2% of one of these compounds (about 0.1% Gd) by weight is
sufficient to cause 90% of the neutrons to capture visibly on gadolinium instead of invisibly
on hydrogen. Following the addition of gadolinium the time between neutron liberation and
capture is reduced by an order of magnitude to around 20 µs, greatly suppressing accidental
backgrounds.

8.2 Water Filtration System

Starting with the very first large-scale Water Cherenkov detector – the Irvine Michigan
Brookhaven (IMB) proton decay experiment, which began taking data in the early 1980’s,
exceptional water clarity has been of key importance for massive devices of this kind. After
all, there is little benefit in making a very large detector unless the target mass contained
within the detector can be efficiently observed.

The strategy employed to create extremely clear water has been to remove all suspended
solids, dissolved gases, ions, and biologics from solution via a series of filtration elements.
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These include microfiltration filters, degasifiers (vacuum and/or membrane type), reverse
osmosis membranes (RO), deionization resins (DI), and exposure to intense ultraviolet light
(UV). The water in the detector must be continuously recirculated through the filtration
system. This is necessary as transparency-impairing materials are steadily leaching into the
chemically active ultra-pure water. In addition, during the process of filtration the water is
typically chilled to further impede biological growth, with the added benefit of simultaneously
reducing PMT dark noise which is typically strongly temperature dependent.

When gadolinium loading is desired, the filtration situation becomes significantly more com-
plicated: somehow the water must be continuously recirculated and cleaned of everything
except gadolinium chloride or gadolinium sulfate. Over the past decade there have been
focused R&D programs both in the US and Japan aimed at devising a method capable of
maintaining this exceptional water transparency while at the same time maintaining the de-
sired level of dissolved gadolinium in solution. A solution has been developed, a novel, truly
selective water filtration technology, now known as a “molecular band-pass filter”.

However, the stringent requirements on water transparency in force at very large water
Cherenkov detectors like Super-Kamiokande, where light can be expected to travel for tens
of meters before it is collected by photomultiplier tubes or other technologies, will be signifi-
cantly relaxed for ANNIE due to its modest physical dimensions. This also greatly simplifies
the situation when Gd is added to the water.

As an outgrowth of the aforementioned water filtration R&D programs, the Gd-tolerance
and efficacy of every component of a traditional water filtration design has been evaluated.
This allows the straightforward design of a streamlined, Gd-tolerant water system tuned for
the needs of ANNIE. An ANNIE water system would include microfiltration, ultrafiltration,
UV light, deionization (during the filling stage only), and membrane degasification, with
temperature control via a chiller recommended but not strictly necessary. Once the detector
is full of pure water the deionization (DI) unit would be bypassed, and then the gadolinium
compound – roughly 40 kilograms in total – would be added directly into the water stream; it
will dissolve as the water is recirculated. When it is ultimately time to remove the gadolinium
from solution, simply turning the DI unit back on will do the trick.

Such a system has a variety of advantages: it is both cost-effective and easy to operate, it has
a modest physical footprint in the experimental hall, and it will provide water of at least 15
meters attenuation length, perfectly adequate for a detector roughly three meters on a side.

8.3 Gd Availability

Gadolinium loading of ANNIE will come at a very modest cost. Based upon years of experi-
ence building similar systems by ANNIE collaborators, the Gd-capable water filtration system
for ANNIE described can be delivered and installed at the experimental site by collaborators
at UC Irvine.

The minimum amount of water soluble gadolinium compound needed by ANNIE is about 50
kilograms. This is enough for one test loading (4 kg) and one full loading (40 kg), with 6
kg left over for various other studies and tests. Over the last two decades the highly volatile
rare-earth market has valued this quantity of Gd2(SO4)3 as high as $24,240.
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As it happens, 50 kilograms of high-quality (99.99% TREO) gadolinium sulfate is currently
available as surplus from the Japanese R&D program. It has been set aside for ANNIE by
the director of the program (M. Vagins, an ANNIE collaborator) and would be supplied to
Fermilab/UChicago free of charge.

9 Photodetection

In this section we describe the availability and development work regarding photosensors to
be used in ANNIE. ANNIE will be a hybrid WCh, containing LAPPDs for detailed event
reconstruction and a large number of conventional photomultiplier tubes to improve light
collection for energy reconstruction and efficient neutron tagging.

9.1 Photomultiplier Tubes

In order to maximize light collection, ANNIE will need to augment its LAPPD coverage with
and existing stock of conventional 8-inch PMTs (manufactured by Hamamatsu) taken from
the IMB and the Super-Kamiokande experiment. PMTs of type I (IMB) have separate bases
and require a water seal, while PMTs of type S (Super-Kamiokande) have integrated bases
sealed by the manufacturer. Both PMTs are operated with positive high voltage between
1,500 V and 2,000 V. To select PMTs for ANNIE, the dark-noise rate of all PMTs was
measured in a small dark box at various voltages. In each case, the PMT was also exposed to
light from a wrapped piece of plastic scintillator attached to a light guide. Between the end
of the light guide and the PMT there is a 10 cm air gap. Inserting a plug into the light guide
blocks the light from cosmic ray muons passing through the scintillator in order to facilitate
the dark-noise measurements. Each PMT was measured at the same distance to the plugged
or unplugged scintillator. All PMTs were triggered (by oscilloscope) with the same threshold.

We have nearly completed basic quality assurance studies of the existing PMT stock. All
of the PMTs were tested in a dark box, both for dark counts, and with light produced by
cosmic rays passing through a scintillator bar. Performance of the PMTs was characterized
by the metric given in Equation 2, where Li are the pulse heights for “light” events produced
by the scintillating bar, and Di are the pulse heights for ”dark” events - spontaneous signals
in a dark box.

Q =
< L > − < D >√

(< L2 > − < L >2)(< D2 > − < D >2)
(2)

Each PMT was then categorized by Q value. The definitions of each classification can be
found in Table 8. Among the PMTs, 63 type-S and 43 type-I tubes are of a quality 1 or
higher, totally 106 (see Table 9). For the 63 Type-S PMTs rated 1 or higher, no additional
costs will be necessary for use in ANNIE. Some work will be necessary to water proof the
usable stock of Type-I phototubes. Some tubes remain to be tested - 67 type-I tubes, and 7
type-S. However, based on the fractions measured so far, we expect that 60-120 usable PMTs
will be available from this stock.
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-1 “bad” nonfunctional
0 “okay” Mean+RMS < Pmax < 0
1 “good” Mean < Pmax < Mean+RMS
2 “great” Mean−RMS < Pmax < Mean
3 “excellent” Pmax < Mean−RMS

Table 8: Classification scheme for the ANNIE PMT-stock, based on QA testing.

Rating -1 0 1 2 3 ≥ 1 untested

Type-S 11 4 36 21 6 63 7
Type-I 76 2 18 16 9 43 67

Table 9: Inventory of the ANNIE PMT stock and their quality ratings. There are 63 Type-S
PMTs rated 1 or higher, and 43 Type-I, with some remaining to be tested.

There are thus two different coverage scenarios, one with 60 PMTs and a high coverage
configuration with more than 100 PMTs. The low coverage scenario is immediately possible
with the ready and tested Super-K PMT stock. The 100 PMT scenario will still require work
to attach water-proof HV bases to the IMB PMTs. The implications of these scenarios are
discussed in Sec. 12.3.

Once, basic QA testing is complete, we plan to more systematically study the PMTs. We of
course will start with those most likely to be used in a first run of ANNIE. High voltages for the
PMTs can be achieved using an existing supply possibly provided by the Super-Kamiokande
collaboration.

9.2 Large Area Picosecond Photodetectors

The Large Area Picosecond Photodetector (LAPPD) project was formed to develop new
fabrication techniques for making large-area (8” x 8”) MCP photodetectors using low-cost
materials, well established industrial batch techniques, and advances in material science [26].

LAPPDs may be a transformative technology for WCh detectors. While conventional photo-
multipliers are single-pixel detectors, LAPPDs are imaging tubes, able to resolve the position
and time of single incident photons within an individual sensor. This maximizes use of fidu-
cial volume as it allows for reconstruction of events very close to the wall of the detector,
where the light can only spread over a small area. The simultaneous time and spatial resolu-
tions of the LAPPDs, at better than 100 picoseconds and 3mm for single photons, represent
a major improvement over conventional PMTs. Preliminary Monte Carlo studies indicate
that the measurement of Cherenkov photon arrival space-time points with resolutions of 1
cm and 100 psec will allow the detector to function as a tracking detector, with track and
vertex reconstruction approaching size scales of just a few centimeters [35]. Imaging detectors
would enable photon counting by separating between the space and time coordinates of the
individual hits, rather than simply using the total charge. This means truly digital photon
counting and would translate directly into better energy resolution and better discrimination
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between dark noise and photons from neutron captures. Finally, at a thickness of less than
1.5 cm, LAPPDs maximize the use of the limited fiducial volume available to small detectors.

9.3 LAPPD Status and Availability

As the LAPPD effort transitions into the next stage of the project, they will become available
through the commercialization process. The DOE awarded $3M possible through the STTR
program to Incom, Inc to develop a commercial line over the next several years. Incom
has been a key institution in the LAPPD project from the beginning, as the company who
fabricates the glass microcapillary arrays that serve as the gain stage central to LAPPDs.
Over the years, they have greatly refined the process of making these substrates and are now
scaling their process for higher volumes and better yields. They have also made significant
progress in expanding the scope of their capabilities, from making the bare plates to building
whole detectors. They have purchased an ALD-reactor system, necessary to coat and activate
the plates. This reactor will be operated by an employee who has spent the last year working
closely with the Argonne group who pioneered the coating process. They purchased an
evaporation chamber for electroding the components. They are also building a large clean
room space for full production line. The assembly of complete, sealed-tube detectors, will
occur in a vacuum-transfer system designed based on LAPPD experts at Berkeley Space
Science Laboratory.

An industry standard for commercialization is around 3-4 years, but with the process al-
ready under way, the timeline for LAPPD tile commercialization has been refined. General
availability of prototype LAPPDs is determined by the progress on the SBIR Phase II com-
mercialization program being implemented by Incom Inc. In private communication with
Michael Minot of Incom Inc., he anticipates demonstrating pilot production of LAPPDs by
Quarter III of 2015 followed by tile pilot production, providing limited numbers of LAPPD
tiles to early adopters in the first half of 2016. Some small number of tiles may be available
sooner. Given ANNIE’s readiness as an early adopter, it is likely that we will be able to
procure at least one such tile.

Production of LAPPDs at Incom will occur in small test batches, with volume increasing in
time. Consequently, ANNIE will likely start with sparse LAPPD coverage: roughly five 20cm
x 20cm LAPPDs to cover the entire 3m x 3m wall facing the beam. In the beginning, all
ANNIE events will resemble those close to the wall of a much larger detector. In addressing
these challenges, ANNIE provides an opportunity to understand the benefits of imaging
photosensors. ANNIE is an ideal first adopter of LAPPDs for neutrino detection, as light
yields are low enough to comfortably fall within the rate handling abilities of the default
LAPPD design, and because the time structure of the beam events and optical pile-up seems
compatible with the electronics in their current, as discussed in Sec 11. Moreover, ANNIE is
small enough that isotropic coverage is possible without huge volumes.

Several other pathways may provide ANNIE with a stock of LAPPDs or smaller detectors
based on similar technologies. Work at University of Chicago, parallel to that of Incom,
explores a more radical and cost-effective fabrication method. This work is ongoing and if
successful, could provide a new source for prototype LAPPDs as well as a path for higher
volume production lines.

35



Figure 17: The Beneq ALD reactor purchased for Incom’s MCP fabrication facility.

9.4 ANNIE Specific LAPPD Development Work

Some application-specific detector development work will be necessary to ready LAPPDs for
use in WCh detectors. In this section we discuss some of the steps necessary to ready these
sensors for use in a WCh.

Once commercially available, early LAPPD prototypes will be thoroughly tested, first on a
test bench and then in a scaled-down operational context. A large variety of testing facilities
and fixtures are available for the task. In addition, there is a broader community of interested
“early adopters” with plans to use LAPPDs in similar experimental contexts. A facility at
the Advanced Photon Source at ANL is designed to characterize the time-response of LAPPD
detectors using a fast-pulsed laser [32]. Fixtures exist to test complete, resealable LAPPD
systems with electronics. These facilities can be used to benchmark the key resolutions of
detector systems and study the effects of pileup from coincident pulses on the same anode
strip.

Tests of the readout and and DAQ can begin even before the first sealed commercial proto-
types become available. Eric Oberla at University of Chicago is building a small, tubular WCh
detector for timing-based tracking of cosmic muons using commercially available Planacon
MCPs. The electronics are designed using the LAPPD front-end system, which will pro-
vide an excellent opportunity for developing operational experience and testing aspects of
the front-end design. It may be possible to deploy this detector on a Fermilab test-beam.
Finally, there are discussions of performing tests either with a radioactive calibration sample
or a test beam on a small target mass coupled to a handful of LAPPDs.

High voltage connections for LAPPDs will be made on the front window. Work will be

36



carried out to design and test a scheme to make these connections and operate the front-
end electronics in water. In addition to answering these specific technical challenges, the
ANNIE effort will also provide critical feedback on the performance and long-term operation
of LAPPDs, thus helping to expedite the commercialization process.

Some funding has already become available through the WATCHMAN collaboration to work
on these technical problems. The goals are to further develop the DAQ for multi-LAPPD
systems and design and demonstrate a method for sealing the electronics and water in high
voltage. Engineers at UChicago will begin work soon.

Once all of the WCh-specific development work is achieved, testing an LAPPD submerged
in water will be the final demonstration of feasibility. Such tests could occur in the official
ANNIE water volume as part of a “Phase I” technical proposal, as described in Sec. 13.

10 Muon Range Detector

The Muon Range Detector (MRD), shown in Fig 18, will be used to measure the momentum
and total energy of muons leaving the ANNIE water volume with range-out energies up to
1.2 GeV/c. As a baseline, ANNIE will make use of the MRD as designed for the SciBooNE
experiment, however there is potential for improvements.

The SciBooNE MRD forms the core of the ANNIE muon range system. The SciBooNE
MRD consists of twelve iron plates, each 2 inches thick, sandwiched between thirteen layers
of scintillator. The scintillator planes were comprised of panels, each 20 cm wide and 0.6 cm
thick, and were were arranged in alternating vertical and horizontal layers. The SciBooNE
MRD was read out by 362 PMTs, each 2 inches in diameter. The iron plates cover an area
of 274 × 305 cm2.

After SciBooNE ceased operations, various parts of the MRD have been claimed by other
groups. In particular, the scintillator panels are owned by New Mexico State University and
many of them may be used in the MicroBooNE veto detector. Thus, instead of relying on a
steel-scintillator sandwich, ANNIE is planning to use a resistive plate chambers (RPCs) that
are available from the digital calorimetry group at Argonne National Laboratory.

The ANNIE MRD would keep the twelve steel plates intact and in their present configuration.
These are currently owned by Dr. Morgan Wascko, a SciBooNE co-spokesperson, who is based
at Imperial College London. We have initiated a property transfer to Dr. Matthew Malek,
also at Imperial College and an ANNIE collaborator. Instead of thirteen layers of scintillator,
the new design calls for only three layers, with the remaining ten layers comprised of RPCs
from Argonne.

The switch to RPCs can be considered a significant upgrade for the ANNIE MRD. The
RPCs have centimeter-level precision at each layer, allowing for more precise reconstruction.
Additionally, the RPCs can tolerate a magnetic field on the order of 1 Tesla. Applying such
a field during a future phase of the experiment would allow for charge-sign reconstruction in
the MRD.
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Figure 3.7: The MRD is installed downstream of the EC. It has 12 iron plates
with thickness of 5 cm and 13 plastic scintillator planes with thickness of 6
mm.

35

Figure 18: A drawing of the SciBooNE Muon Range Detector.

The RPCs will be provided by the digital calorimetry group at Argonne National Laboratory,
and are ready now. Each RPC is layer is one square meter, with onboard readout pads, and
has position resolution at the centimeter level for each layer.

Unlike the SciBooNE MRD, which contained thirteen layers of scintillator, the ANNIE MRD
could be arranged with three layers of scintillator and ten layers of RPCs in the following
configuration: The first (i.e., most upstream) layer of the detector is to be composed of
scintillator and used as a trigger. This will be followed by five layers of RPCs. A second
scintillator layer will serve as a coincidence trigger for noise reduction, if necessary. During
the test phase known as ANNIE Phase I, we will evaluate whether this coincidence trigger
is required. Following the second scintillator layer, there will be five more layers of RPCs,
ending with a final layer of scintillator. This last layer will tag exiting events, for which only
a lower bound on energy can be set.

The Argonne RPCs have been tested with both a steel absorber (at Fermilab) and a tungsten
absorber (at CERN). They are available now, with a working readout, and can be included
in the ANNIE Phase I test.

Additionally, the RPCs can tolerate a magnetic field on the order of 1 Tesla. Applying such
a field during a future phase of the experiment would would greatly enhance the physics
potential of the MRD by allowing charge-sign reconstruction. This capability would bring
the MRD beyond simple calorimetry, enabling measurements of energy and charge-sign via
curvature in the magnetic field. Even for the most energetic beam events, momentum mea-
surements are then possible from curvature. The high position resolution of the RPCs enable
precision measurements of the curvature and a strong particle identification (PID).
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ANNIE could be the first experiment to use a magnetized MRD in conjunction with a Gd-
loaded water Cherenkov detector. The neutron capture on gadolinium provides complemen-
tary information to the curvature in the magnetic field. Thus, using this information in a
global reconstruction provides a high purity selection of lepton charge-sign and interaction
type.

11 Electronics

The trigger and readout electronics will be developed jointly by UChicago, ISU and Queen
Mary. The UChicago group together with UHawaii have been the main developers for the fast
readout chip PSEC4. The ISU group brings significant prior experience with data acquisition
systems. The Queen Mary group also has significant expertise from their work in the T2K
and SNO+ experiments.

The electronics design for ANNIE needs to accommodate both fast sampling of the Cherenkov
light from the muon track (100 ps resolution over ∼100 ns duration) and the delayed capture
of the thermal neutrons, which occurs approximately 30 µs later. ANNIE will require an
integrated system with both LAPPDs and conventional PMTs. Because of the near-surface
operation and intense light from signal events spread over the small area of the detector walls,
the front-end and DAQ systems will be designed to handle this optical pileup.

A trigger rate of ≤ 20 Hz is envisioned, which includes 7.5 Hz of beam spills from the
Booster Neutrino Beam, each spill lasting approximately 1.6 µs. The chance probability for
event interaction pileup during a beam spill from muon neutrino interactions is extremely
small, so that one can assume less than 1 neutrino interaction per beam trigger. This leaves
ample room for calibration signals such as random triggers (which measure the detector in a
quiescent state), cosmic ray-induced muons passing vertically through the detector, injected
light calibrations, etc. As noted in section 11.3, an anti-coincidence shield will be required
to moderate the rate of cosmic ray-induced muons and keep the overall trigger rate at a
manageable level (tens of Hz) for the proposed electronics.

The event rate encompasses physics occurring on two vastly different time scales, which
argues for a dual readout system. The fast signal from the muon track will be sampled with
high time resolution using a fast readout system, described in section 11.1. The slow system
requires only moderate bandwidth (62.5 MS/s - 250 MS/s) but must accommodate a readout
window significantly greater than 30 µs in order to capture the delayed component and to
measure the background from sky shine. This system is described in section 11.2. This dual
scheme enables precision reconstruction of the prompt events with continual readout for the
subsequent captures.

While the fast readout system was developed and optimized for the LAPPDs, we plan to
record signals from the PMTs using both the slow and fast electronics. This allows us
to better use the PMTs to compensate for limited LAPPD coverage when measuring the
fast component and it also has advantages for cross-calibration purposes. Signal splitters
developed for the CDF collaboration will be used to split the PMT signal for this purpose.

The large number of channels in the LAPPDs does not allow the use of the same dual readout
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scheme as the one used for the PMTs. However, even while “dead” the PSEC4 chips continue
to write out prompt pulses. This means that the PSEC trigger system can still detect, count,
and time-tag pulses above the trigger threshold during the dead period. In this sense, a slow
readout system could be designed in firmware to enable LAPPDs to detect neutron captures,
even while the sampling electronics is frozen to read out the prompt event.

11.1 Fast Readout System

The fast readout system will be adapted from a complete front-end system for LAPPDs
already developed and tested by groups at the University of Chicago and University of Hawaii.
The system is built around a new class of low power, custom designed waveform sampling
chips [27–31]. Some development work will be necessary to address the unique needs of the
ANNIE detector.

The default choice of electronics for ANNIE fast readout system is a suite of electronics
built around the PSEC-4 chip [27]. This chip is a CMOS-based sampling ASIC, sometimes
described as a scope-on-a-chip. The PSEC-4 allows full shape fitting of LAPPD pulses and
consequently a more sophisticated analysis of the hits. The chip has a 256-sample circular
buffer; the total duration of that buffer is set by the clock rate, which is adjustable over a
range of 30-50 MHz. The duration of a single sample is the length of one clock cycle divided
by 256 and the sampling rate is the clock rate multiplied by 256.

Nominal settings for the PSEC-4 puts the sample size at around 100 picoseconds, correspond-
ing to a 25 nanosecond buffer and a clock rate of 40 MHz. Once a decision is made to read
the buffer, that channel is dead for 2-4 microseconds. So, reading a chip can mean as much
as 20 microseconds of dead-time.

A proposed PSEC-5 chip would have a much deeper (order microseconds) circular buffer,
almost capable of continuous operation at low rates. However, on the timescale for ANNIE,
it is more realistic to design around the existing chip. Fortunately, given the length scales
of the ANNIE detector, and the fact that we can trigger on the beam clock, it should be
possible to cover the entire prompt event with the PSEC-4 buffer.

The PSEC electronics has been integrated into a full readout system. Firmware already exists
to operate 120 channels (2 LAPPDs) with self-triggering. Six PSEC chips are incorporated
into an analog-to-digital card (ACDC). Two ACDCs are needed per LAPPD (one for each
side). Four of these cards are integrated into an FPGA-based “central card”, although
systems with more than 4 ACDCs will likely require a different architecture.

11.2 Slow Readout

The requirements of the slow readout system can be met by off-the-shelf commercial FADCs
with buffer depth exceeding 100 µs and moderate bandwidth specification (62.5 MS/s - 250
MS/s). Examples of these devices include the CAEN V1740 64-channel 12-bit digitizer and
the CAEN 1720 8-channel digitizer, respectively. Both have memory buffers with adequate
depth: 10MS/ch (CAEN 1720) and 1.5MS/ch (1740). Given a trigger rate of 20Hz envisioned
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for ANNIE, the data rate requirements for a 60 µs readout window (∼ 2 times the minimally
required window) results in 4 MB/s. Both CAEN modules accommodate data transfer rates
of 60 MB/s - 160 MB/s using a VME interface. Assuming the dead time of the modules is
dominated by the data transfer, and given the trigger rate of 20 Hz planned for ANNIE, we
expect a per trigger dead time of a few ms.

11.3 Cosmic-Ray Induced Muons

The large flux from cosmic-ray induced muons in the Earth’s atmosphere results in an integral
flux of approximately 166 m−2 s−1 at sea level with a spectral peak energy of ∼4 GeV. For
an accurate flux prediction at the SciBoonNE site, detailed simulations are required to take
into account the fluctuations in the range of muons passing through the surrounding rock.
However, we can treat the muon rate at the surface as an upper range for the actual rate,
giving a rate of ∼1.4 kHz using an effective collection area of 8.6 m2 for the ANNIE tank.
In order to reduce these events to a rate of less than 1 Hz, an anti-coincidence shield with
a high efficiency is required. While a large rate of cosmic ray muons is undesirable, muons
passing through the detector volume along a well-defined path can provide an independent
means of calibrating the ANNIE detector throughput. This could monitor the collective
effects from changes in the optical throughput in the Gd-doped water, the phototube gains,
the quantum efficiencies and any variations in the electronics system. For example, by forcing
the electronics to trigger on a select range of vertical muons at a rate of 5 Hz, the detector
response and changes therein could be monitored at the few percent level over time scales of
less than 30 minutes.

11.4 Trigger Strategy

We envision the following trigger strategy: beam spill events have the highest priority and an
external trigger of the slow electronics readout occurs at each beam spill, irrespective of the
status of the anti-coincidence to guard against a high rate of cosmic ray triggers. A 60−100µs
window is read out of the FADC buffers, starting at the time of the beam spill trigger. While
the probability of a cosmic ray event passing through the detector is small (10−4), a status
bit, indicating the state of the anti-coincidence (and thus the presence or absence of cosmic
ray-induced muons), will be stored along with the other event data. It may also be desirable
to force readout of the MRD with every triggered event.

There is some additional subtlety required when triggering readout of the fast electronics
system, due to that system’s short (∼ 30 ns) buffer depth and high deadtime. This means
an additional trigger condition must be applied in addition to the beam spill requirement,
based on the number of individual chips or channels that trigger. This additional trigger
requirement has two tiers. First the buffers on each PSEC-4 chip will be frozen if triggered
by simultaneous signals on more than one channel, preventing loss of data. Second, a more
aggressive requirement demanding a larger channel trigger multiplicity is imposed, ANDed
with the beam spill trigger. If no such condition is met, the hold is be taken off of the
chip, immediately making it active again. With this trigger scheme, the only dead time for
non-events would be the few nanoseconds necessary to make a global trigger decision. When
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a real event happens, then the relevant chips will be dead for several tens of microseconds.
However, given the beam structure and expected event interaction pile-up, this still allows
mostly active operation from bunch to bunch.

Calibration events will be forced to fall outside the beam spill during which the electronics
will be disabled for any other events. Calibration events include vertical cosmic-ray muons.
Cosmic ray vertical muons are defined as muons passing through a yet to be determined set
of scintillator paddles, that allow one to select muons with a well defined vertical path length
through the ANNIE detector volume. The rate will be controlled by the acceptance (size) of
the paddles.

12 Simulations and Detector Requirements

Parallel with the progress in hardware, there is an existing effort to develop the simulations
and reconstruction work necessary to guide the design of the detector and make full use of the
LAPPDs. Groups at Iowa State University, University of Chicago, Queen Mary University,
Imperial College, UC Irvine, and Ultralytics LLC will significantly contribute to this effort.
The groups will use a variety of existing resources and their previous experience in this area.

Critical capabilities of the ANNIE detector include:

• A detector with an appropriate form factor and fiducial volume to ensure efficient
stopping of neutrons.

• Sufficient PMT coverage to ensure efficient detection of the light from neutron captures.

• Sufficient LAPPD and PMT coverage to discriminate between different event categories.
At minimum, this means efficient separation of CCQE events from CC and NC events
with pions and gammas. Ideally, we would also be able to categorize neutral current
and multi-track events.

• Accurate reconstruction of muon momentum and total visible energy.

• Light yields and distributions compatible with the characteristics of the chosen photo-
sensors.

Given the known physics of neutron scattering and capture in Gd-loaded water, we use
GEANT simulations to answer these questions and thereby set the dimensions and determine
the needed photocathode coverage of our detector. Simulations are also needed to answer
questions regarding possible background from neutrino interactions from the rock behind the
wall of the detector hall, as well as other cosmogenic backgrounds.

Determining the rates and light yield of this event interaction pileup is necessary for the
design of the trigger system and the LAPPD readout system. Also, light from signal events
may be concentrated over small areas and thus the optical pileup of hits on individual anode
channels must be understood. Optimizing pattern matching algorithms, and determining
appropriate buffer sizes and tolerable dead times will also be important.
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Figure 19: A schematic showing the strategy for choosing a fiducial volume to ensure full
containment of neutrons.

LAPPDs serve several purposes. First and foremost, we need to accurately determine the
location of the interaction point within the detector. That way, it is possible to select events
where the neutrinos start sufficiently far from the walls that the neutrons are unlikely to
escape. LAPPDs are also critical in reconstructing details of the interaction: track parameters
(especially for low energy muons and other particles that will not be reconstructed by the
MRD) and possibly particle ID.

12.1 Neutron Containment and Vertex Reconstruction

High energy neutrons (10-100s of MeV) produced by neutrino interactions within the ANNIE
volume will travel some distance before slowing to a stop. A few meters of water are sufficient
to stop the vast majority of these neutrons. The ANNIE detector, with roughly 3 m length
scales is sufficient for stopping neutrons produced sufficiently far from the walls. Thus, it
is best to restrict the ANNIE analysis to a smaller fiducial volume, appropriately placed
to allow range-out of neutrons. This is depicted schematically in Fig 19. Figure 20 shows
the range-out locations of the neutrons with respect to their initial starting points. These
stopping distances are symmetric about the starting point in the direction transverse to the
neutrino beam, and forward of the starting point in the beam direction. Thus, the fiducial
volume can be chosen in the center of the detector, 1.2 meters away from the wall in the
transverse directions, and upstream of the detector center in the beam direction. Given a
roughly 30 ton total volume, it is possible to chose such a fiducial region while still maintaining
more than the 1 ton of target mass sufficient for a basic measurement. Moreover, if we can
demonstrate sufficient understanding of the detector efficiencies, it may be possible to perform
a more inclusive analysis, making use of much more target mass. Regardless, this analysis
will require accurate reconstruction of the interaction points in the detector.

At the energies of the Booster Neutrino Beam, ANNIE will see a variety of neutrino inter-
actions, ranging from Charged Current Quasi-Elastic (CCQE) and elastic Neutral Current
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Figure 20: Distributions showing the stopping distance of neutrons in ANNIE, in the two
directions transverse to the beam (red and black) and along the beam axis (blue). In the
transverse direction, 90% of all neutrons stop symmetrically ±1.2 meters from their starting
points (designated by the black arrows). In the beam direction, 90% of the neutrons fall in a
window mostly in front of their starting position, ranging from -0.3 to 2.1 meters (designated
by the blue arrows).
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Figure 21: Four event displays showing examples of various interactions in the ANNIE de-
tector. The colors represent time, with blue being earliest and red latest times. Upper left:
CCQE interaction with a single muon exiting the volume. Upper right: CC resonant pion
production with a fully contained muon and π0 decaying to two gammas. Lower left: NC
resonant pion production with a low energy π0 decaying to two gammas. Lower right: A CC
deep inelastic scattering interaction producing a muon, a π0, and a γ. In all for plots, the
beam direction is pointing along the cylinder axis to the right.

(NC) interactions to resonant pion production (which turns on at around 1 GeV) and even
some deeper, ineleastic scatters. Example event displays in a cylinder approximating the
ANNIE form factor are shown in Fig 21.

Much of the light produced by these events will be in the forward region of the detector with
respect to the beam direction. However, for increasingly inelastic interactions and high q2

more tracks and light will be dispersed around 4π.

12.2 LAPPD Coverage and Fine Tracking

Ultimately, we intend to operate ANNIE with more than 50 LAPPDs. However, given the
expected time table for LAPPDs (see Sec. 9.2), the current goal of our simulations and
reconstruction work is to establish the minimum number of LAPPDs necessary to meet our

45



minimum physics goals. We think it is possible to operate with as few as 12 LAPPDs.

One of the key requirements of the ANNIE detector, discussed above, is the ability to identify
events with interaction points located in a fiducial volume offset sufficiently far from the walls
of the detector. In pure CCQE events with only one track, the position of the interaction
vertex along the direction track is not constrained by timing alone, since there is a degeneracy
in time with the starting point and unknown t0 of the interaction. The starting point of the
track in the parallel direction is determined by finding the edge of the Cherenkov cone.
LAPPDs can help in the following way:

• Excellent directionality and reconstruction of the vertex in the plane transvers to the
track direction.

• If a Cherenkov cone-edge crosses one or two LAPPDs, the ability to resolve the positions
of hits within a single LAPPD module can enhance the accuracy for fitting the cone
edge.

• Timing on the LAPPDs can be used to separate between single-track and multi-track
events, so long as light from more than one track hits an LAPPD. The causal incon-
sistency of the light with a single-track hypothesis would provide the relevant figure of
merit.

The degeneracy between the unknown t0 and starting point of the track is broken for multi-
track events. Multi-track events have a single solution for the vertex, which can be determined
by causality of the light arriving to the walls. Therefore, our strategy is to: (1) use LAPPDs
to discriminate between single-track and multi-track events, (2) use timing on the LAPPDs
to find the vertex in multi-track events, and (3) use the combination of PMT hits and MRD
track reconstruction (at minimum) to find the cone-edge for single tracks.

Better reconstruction is possible as larger numbers of LAPPDs become available. Ideally, we
would like 50-100 LAPPDs, enabling 5-10% coverage. The minimum number of LAPPDs is
set by the requirement that some light from all tracks in the fiducial volume should hit at
least one LAPPD. Since the fiducial volume is more than 1 meter away from the walls of the
detector, this means that spacing of ∼2 meters between LAPPDs would suffice to meet this
criteria. We are currently working on final optimization of that coverage, but we believe that
a scheme involving ∼12 LAPPDs, such as the one shown in Fig 22, will suffice.

12.3 PMT Coverage and Neutron Tagging Efficiency

We are currently examining two coverage scenarios: a low coverage operation with 60 PMTs
and a high coverage option with more than 100 PMTs. These two scenarios are chosen based
on the known availability of PMTs for the detector: roughly 60 are immediately available
for use, while more can be made usable with some effort to refurbish the base of the tubes
(see Sec 9). We have created simulations to study the effects of different numbers and
arrangements of PMTs, with the goal of identifying how often we collect enough light to
identify a Gd-capture. Conservatively assuming an effective quantum efficiency of 20%, we
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Figure 22: A possible scenario for instrumenting the ANNIE volume with 12 LAPPDs.

 Matthew Malek – 2014 Oct 26 16

Neutron Capture Light Yield
● Config. 2) 5 x 5 grid of 8” PMTs 

– Top + Bottom + Left + Right
– 100 PMTs total

● Config. 3) 10 x 10 grid of 8” PMTs 
– Top + Bottom
– 200 PMTs total

● Config. 4) 7 x 7 grid of 8” PMTs 
– Top + Bottom + Left + Right
– 196 PMTs total

● Config. 5) 3 x 3 grid of 8” LAPPDs upstream
 2 x 2 grid of 8” LAPPDs downstream

Figure 23: The total number of hits detected by the PMT system for 100 PMTs in a cubic
geometry.

look at the number of detected photons per capture. Figure 23 shows a simulated scenario
with 100 PMTs distributed in a 3m cubic geometry, only on the top, bottom, and side walls
(not the front and back). This study was conducted assuming an earlier cubic geometry and
will soon be redone for the cylindrical case, with 60 and 100 PMTs arranged isotropically.
Even with fewer PMTs, we expect higher efficiency with isotropic coverage given that fewer
than 5% of the events in the cubic simulation provide fewer than 5 hits.

12.4 Simulating the LAPPD Response

The stripline anode readout in the nominal LAPPD design presents reconstruction challenges
when multiple photons hit the same strip, a phenomena we refer to as “optical pileup”. A
variety of techniques can, in fact, be used to disambiguate multiple hits per strip. These
are being studied in a real LAPPD test setup and used as the basis for a more sophisticated
LAPPD response model than the parametric smearing currently used in our Monte Carlo.
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Figure 24: Left: A temperature plot showing the time evolution of multiple photon hits on
the striplines of an LAPPD. Right: A simulation of a four-stripline cluster struck by two
photons, as would be seen in the output of PSEC electronics.

Figure 24 shows simulations of the LAPPD response.

ANNIE is an ideal context for an early application of LAPPDs precisely because the Chernkov
light yield and area-to-volume of the detector minimize the likelihood of multiphoton pileup.
Figure 25 shows a histogram of the number of hits per strip for a random ANNIE event.
Figure 26 shows what fraction of LAPPDs produce more than 30 photoelectrons per event,
for 200 events. Since LAPPDs have 30 stripline anodes, this corresponds to the fraction of
LAPPDs with at least some multi-photon pile-up. Typically, less than 15% of LAPPDs see
more than 30 hits in any given event. The studies presented here were performed using an
older cubic design and will need to be redone for the current cylindrical geometry. However,
given comparable length scales we do not expect a substantial change in the results

12.5 Future Simulation Work

Studies presented in this section are ongoing and will continue, as we finalize the details of
the ANNIE design. Most of the simulations and reconstruction work so far has relied on a
simple Monte Carlo package called WChSandBox. Collaborators at Queen Mary, UChicago,
and Ultralytics LLC are working on developing full Montecarlo, with digitization model and
more realistic implementations of the photosensors. Reconstruction work will be performed
by UChicago and Iowa State. This work will continue through next year.
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Figure 25: Simulations of a particular event in a 3m cubic geometry. Left: histogram of the
number of hits per stripline. Right: Event display.
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Figure 26: The fraction of LAPPDs with more than 30 hits (some muti-photon optical pileup)
per event.
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13 Proposed Timeline

We propose to separate the operation of the experiment into three phases. The first phase
which is immediately relevant would focus on technical development and background char-
acterization. The first physics run of ANNIE would occur in the second phase after having
demonstrated key technical aspects of the experiment in its first phase of running. With a
third phase allowing for a more precise measurement for different classes of interactions.

13.1 Phase I: Technical Development and Background Characterization

(Begin installation Summer 2015, run Fall 2015-Spring 2016)

A variety of background neutrons, both those originating from rock, and those from sky
shine, present a challenge for ANNIE. Characterization of these background neutrons can
occur before full LAPPD coverage is available. We thus propose to install and operate
the detector with the components that are already available such as the water volume, Gd
supply and stock of conventional PMTs. This detector provides a useful setup for testing early
LAPPD prototypes as they become available. In addition, the Double Chooz Time Projection
Chamber (DCTPC), a small gas-phase TPC calibrated for neutron detection may be available
to provide ex-situ measurements of neutron backgrounds to compare against neutron tagging
in the water volume. This represents an opportunity to make relevant physics and technical
measurements while testing and developing the technology for the full physics experiment.
We therefore present ANNIE Phase I as a technical proposal.

The available components for ANNIE Phase I would be the ANNIE water tank instrumented
with the 60 working Type-S PMTs, with a smaller, movable, plexiglass inner volume of Gd-
loaded water. There will likely be at least one LAPPD prototype and one Argonne-made
6cm glass tile. The Gd-enhanced water volume would be moved around in the larger tank
to study how measured rates of neutron detection rise and fall with distance from the walls
in the horizontal and vertical direction, with and without in-volume beam events. These
rates can be compared with predictions based on ex-situ measurements using DCTPC. They
will provide critical information on beam-correlated dirt neutron production and sky shine
neutrons, critical knowledge for the successful operation of ANNIE. They could also prove
useful for understanding these backgrounds on LAr1ND.

Technical Objectives:

• Operation of the type-S PMTs in water

• Operate basic electronics - ability to see beam structure, prompt event, and delayed
captures

• In-situ optical calibration with pulsed LED or fiber laser

• Test a single LAPPD (and/or small glass MCP), with HV connections, in water
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Support is required by FNAL engineering to estimate costs of installation, safety inspection
and commissioning. Computing support for simulations and data acquisition will also be
required. Also funds for the slow electronics and early LAPPD prototype tiles will also be
needed.

13.2 Phase II: ANNIE physics run I

(Installation Summer 2016, run Fall 2016 - Spring 2017)

Phase II of ANNIE would represent the first full physics run. This phase will begin when we
have acquired sufficient LAPPDs to operate our “low-coverage” LAPPD scenario, as deter-
mined by simulation and reconstruction studies. As clarity is achieved regarding costs and
availability of LAPPDs Phase II will be the target for submitting a complete physics proposal
and soliciting operational budgets from various agencies. It is hoped that the upgrade and
installation could occur over summer 2016 with full operation achieved by fall 2016.

The technical components of ANNIE Phase II will include a full, Gd-enhanced water volume
with the 60 working Type-S PMTs, and a small but sufficient number of LAPPDs; the refur-
bished MRD; a full electronics scheme; and external neutron monitoring, either by DCTPC
or a custom reproduction.

This first measurement will be an inclusive measurement of neutron yields as a function of
reconstructed q2 and Evis, with the possibility of separating between Charged Current and
Neutral Current events. We will also test out, with limited coverage, the ability to identify
neutrino interactions that imitate proton decays.

Technical Objectives:

• Demonstration of full DAQ

• Operation and successful tracking with water potted LAPPDs

• Track/event reconstruction

• Working MRD - compare MRD tracking with LAPPDs

• Timing calibration

13.3 Phase III: ANNIE physics run II

(Run Fall 2017 or on completion of Phase II - Fall 2018)

Phase III represents the full realization of the ANNIE detector. It will occur at such time as
funding and availability allow moderate (> 10%) coverage, isotropically. We estimate that
this will correspond to roughly 50-100 LAPPDs. With sufficient LAPPD coverage, detailed
kinematic reconstruction and particle ID may become possible. In such a case, we will measure
neutron yields for event classes separated by detailed inventory of final state particles. Phase
III will be designed to explicitly identify PDK-background events. Detailed plans for this
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operation are in development and contingent on further simulations and reconstruction work,
and validation against data collected in Phases I and II.

Technical objectives: complete event reconstruction - analysis using mostly active volume.

Physics goals:

• Neutron yield measurements with detailed event reconstruction

• Explicit tagging of PDK backgrounds

13.4 Additional ANNIE runs

After successful operation of the two ANNIE physics runs to the satisfaction of the col-
laboration, additional runs may be possible with the goal of improving on the physics and
testing new R&D directions. These directions might include tests with water-based Liquid
Scintillator.

14 Budget and Funding Strategy

The budget and funding strategy is currently being developed. A budget for phase I of
ANNIE will be submitted in time for the PAC meeting in January 2015. In this phase the
most significant costs will be related to engineering, including completing the design and
installation of the water tank and PMTs as well as the electronics. Additional costs will
include the acquisition of LAPPD prototype tiles and its readout. The already existing
resources committed for ANNIE are shown in Table 10.

In terms of a funding strategy, we require PAC approval to be able to present a proposal
to the agencies for the funding of manpower at the laboratory and universities in order
to run the experiment. The Department of Energy has invested significant funds in the
development of LAPPD in the past and thus there is interest in this experiment as a proof
of principle HEP application. Also the physics of proton decay has been recommended as
one of the science drivers in the P5 report, under the category of Exploring the Unknown
through Baryon Number Violation. Specifically the search for proton decay is cited in the
report as “an avenue to probe this [1016 GeV] ultra-high energy scale”. We thus expect both
DOE and NSF to welcome ANNIE as a significant contribution to “the planned program for
neutrino experiments Hyper-Kamiokande and LBNE which offer the opportunity to increase
the sensitivity to proton decay by an order of magnitude” as described in the report.
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item contributing institution section of white paper

Water Tank U Chicago Sec 7
50 kg of Gd UC Irvine Sec 8
63 SK-PMTs UC Irvine Sec 9
43 IMB-PMTs UC Irvine Sec 9
Steel and Scintillator MRD Imperial College/SciBooNE Sec 10
RPC-based MRD ANL Sec 10

Table 10: Existing resources available for the ANNIE experiment.

15 Conclusions

The ANNIE experiment provides an opportunity to make an important measurement of the
final-state neutron abundance from neutrino interactions with water nuclei as a function of
momentum transfer. This measurement will have a significant impact on a variety of future
physics analyses, including a nearly factor of five (or more) improvement in the sensitivity
of WCh proton decay searches provided by efficient neutron tagging. ANNIE also provides
a low-cost opportunity to maintain technological diversity and Water Cherenkov expertise
in the US neutrino program. ANNIE will represent a first demonstration detector for WCh
reconstruction using the newly developed, high resolution LAPPD imaging sensors. Much
development work has already been done by the LAPPD collaboration, including a working
readout system with capabilities well matched to the needs of ANNIE. The experiment-
specific development mainly involves implementation, some amount of customization, and
long-term systems testing in a real physics context.

In this Letter of Intent we have addressed key elements of the design and planning for ANNIE.
Namely, we have carried out a detailed site study for neutrino beams at Fermilab concluding
that the SciBooNE hall is indeed optimal for this experiment. We have started to understand
the neutron background at the site and propose to install a prototype that will allow us to
characterize this background and at the same time allow us to demonstrate key technical
aspects for a full physics run of the experiment. We have also made significant advances in
the planning of the experiment, for example a mechanical design of the water target has been
carried out and a potential vessel identified. Photomultiplier tubes have been tested and
additional potential tubes have been committed for use in ANNIE. Potential substitute to
the scintillator of the SciBooNE MRD has also been found. The requirements and potential
design of the electronics system have been discussed in this document. Finally, significant
progress has been made in the simulations and definition of the detector requirements to
carry out the physics program of the experiment.

As when we presented our first Expression of Interest, Fermilab’s support and interest plays a
critical role in the success of ANNIE. The availability of the SciBooNE hall and access to the
Booster Neutrino Beamline is critical. We are requesting approval and engineering support
to plan the installation, safety inspections and commissioning of the phase I of ANNIE. We
would also benefit from support in the form of computer resources and simulations expertise
for this phase. This phase is crucial to enable the collaboration to seek funding to complete
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the experiment and achieve the physics goals of ANNIE.
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